An evolutionarily young defense metabolite influences the root growth of plants via the ancient TOR signaling pathway
نویسندگان
چکیده
To optimize fitness a plant should monitor its metabolism to appropriately control growth and defense. Primary metabolism can be measured by the universally conserved TOR (Target of Rapamycin) pathway to balance growth and development with the available energy and nutrients. Recent work suggests that plants may measure defense metabolites to potentially provide a strategy ensuring fast reallocation of resources to coordinate plant growth and defense. There is little understanding of mechanisms enabling defense metabolite signaling. To identify mechanisms of defense metabolite signaling, we used glucosinolates, an important class of plant defense metabolites. We report novel signaling properties specific to one distinct glucosinolate, 3-hydroxypropylglucosinolate across plants and fungi. This defense metabolite, or derived compounds, reversibly inhibits root growth and development. 3-hydroxypropylglucosinolate signaling functions via genes in the ancient TOR pathway. If this event is not unique, this raises the possibility that other evolutionarily new plant metabolites may link to ancient signaling pathways.
منابع مشابه
An evolutionarily young defense metabolite influences the root growth of plants via the ancient 1
An evolutionarily young defense metabolite influences the root growth of plants via the ancient 1 TOR signaling pathway. 2 3 Malinovsky F.G.1, Thomsen M-L.F.1, Nintemann S.J.1, Jagd L.M.1, Bourgine B.3, Burow M.1, and 4 Kliebenstein D. J. 1,2* 5 6 1DynaMo Center, Copenhagen Plant Science Centre, Department of Plant and Environmental 7 Sciences, University of Copenhagen, Copenhagen, Denmark 8 2D...
متن کاملRapamycin and glucose-target of rapamycin (TOR) protein signaling in plants.
Target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator that integrates energy, nutrients, growth factors, and stress signals to promote survival and growth in all eukaryotes. The reported land plant resistance to rapamycin and the embryo lethality of the Arabidopsis tor mutants have hindered functional dissection of TOR signaling in plants. We developed sensitive cellu...
متن کاملEvolution of the TSC1/TSC2-TOR signaling pathway.
The TSC1/TSC2-TOR signaling pathway [the signaling pathway that includes the heterodimeric TSC1 (tuberous sclerosis 1 protein)-TSC2 (tuberous sclerosis 2 protein) complex and TOR (target of rapamycin)] regulates various cellular processes, including protein synthesis, in response to growth factors and nutrient availability. Homologs of some pathway components have been reported from animals, fu...
متن کاملThe TOR pathway modulates the structure of cell walls in Arabidopsis.
Plant cell growth is limited by the extension of cell walls, which requires both the synthesis and rearrangement of cell wall components in a controlled fashion. The target of rapamycin (TOR) pathway is a major regulator of cell growth in eukaryotes, and inhibition of this pathway by rapamycin reduces cell growth. Here, we show that in plants, the TOR pathway affects cell wall structures. LRR-e...
متن کاملBacillus thuringiensis - Mediated Priming Induces Jasmonate/Ethylene and Salicylic Acid-Dependent Defense Pathways Genes in Tomato Plants
Bacillus thuringiensis Berliner as a biological control agent can play a crucial role in the integrated management of a wide range of plant pests and diseases. B. thuringiensis is expected to elicit plant defensive response through plant recognition of microbe-associated molecular patterns (MAMPs), however, there is little information on the molecular base of induced systemic ...
متن کامل